nhanlikesub.click

Exercices Corrigés Maths Seconde Équations De Droites

Fri, 05 Jul 2024 11:26:39 +0000

L'équation réduite de (d) est: y = x+2. D appartient à (d) y = 8 + 2 y = 12. Donc D(8;12). b) * droite (BC): - coefficient directeur: m = =3. - Une équation de (BC) est de la forme: y = 3x + p. - B appartient à (BC) donc 3 = 0+p soit p=3. - donc (BC): y = 3x+3. * droite (AD): y=3x-3. Ces deux droites ont même coefficient directeur égal à 3, elles sont donc parallèles. c) M milieu de [AB]: M; soit M(0, 75; 2, 25). N milieu de [CD]: N; soit N(-0, 5; -1, 5). (-1, 25; -3, 75) et (-1;-3). donc: =-1, 25. Exercices corrigés maths seconde équations de droites en france. Les vecteurs et sont colinéaires donc les droites (MN) et (BC) sont parallèles. Donc le coefficient directeur de la droite (MN) est 3. Une équation de (MN) est donc de la forme: y = 3x+p. Et M appartient à (MN) donc: 2, 25 = 3×0, 75 + p; soit p = 0. Ainsi, (MN): y = 3x. Donc (MN) est une droite représentée par une fonction linéaire; elle passe donc par l'origine O. a) b) Montrons que (AB)//(CD) mais que (AC) et (BD) ne sont pas parallèles. coefficients directeurs: m (AB) = m (AC) = m (CD) = m (BD) =.

  1. Exercices corrigés maths seconde équations de droites d’une hypersurface cubique

Exercices Corrigés Maths Seconde Équations De Droites D’une Hypersurface Cubique

3. La droite (AB) admet pour coefficient directeur: ${y_B-y_A}/{x_B-x_A}={0-2}/{4-1}=-{2}/{3}$. Or, $d_2$, d'équation: $y=-{2}/{3}x+5$, a aussi pour coefficient directeur $-{2}/{3}$. Donc $d_2$ et (AB) sont parallèles. Il reste à prouver que $d_2$ passe par C. On calcule: $-{2}/{3}x_C+5=-{2}/{3}×6+5=-4+5= 1=y_C$. Donc les coordonnées de C vérifient l'équation de $d_2$. Donc $d_2$ passe bien par C. c. q. f. d. "Exercices corrigés de Maths de Seconde générale"; Equations de droites du plan; exercice2. 4. Les coordonnées du point $D(x_D;y_D)$, intersection des droites $d_1$ et $d_2$, vérifient à la fois les équations de $d_1$ et de $d_2$. Ces coordonnées sont donc solution du système: $\{\table y={1}/{2}x+{3}/{2}; y=-{2}/{3}x+5$ En substituant au $y$ de la seconde ligne la formule donnée par la première ligne, on obtient: ${1}/{2}x+{3}/{2}=-{2}/{3}x+5$ $⇔$ ${1}/{2}x+{2}/{3}x+=5-{3}/{2}$ $⇔$ $({1}/{2}+{2}/{3})x={10}/{2}-{3}/{2}$ $⇔$ $({3}/{6}+{4}/{6})x={7}/{2}$ $⇔$ ${7}/{6}x={7}/{2}$ $⇔$ $ x={7}/{2}×{6}/{7}=3$ Et, en reportant dans la première ligne, on obtient: $y={1}/{2}×3+{3}/{2}=3$ Donc, finalement, le point $D$ a pour coordonnées $(3;3)$.

A retenir: la méthode utilisant la colinéarité de vecteurs pour obtenir facilement une équation de droite. 2. Le vecteur ${u}↖{→}(2;0, 5)$ est directeur de la droite $d_1$. Si on pose: $-b=2$ et $a=0, 5$, c'est à dire: $b=-2$ et $a=0, 5$, alors $d_1$ admet une équation cartésienne du type: $ax+by+c=0$. Donc $d_1$ admet une équation cartésienne du type:: $0, 5x-2y+c=0$. A retenir: la droite de vecteur directeur ${u}↖{→}(-b;a)$ admet une équation cartésienne du type: $ax+by+c=0$. Or $d_1$ passe par $A(1;2)$. Donc: $0, 5×1-2×2+c=0$. Donc: $c=3, 5$. Donc $d_1$ admet pour équation cartésienne: $0, 5x-2y+3, 5=0$. Or: $0, 5x-2y+3, 5=0$ $⇔$ $-2y=-0, 5x-3, 5$ $⇔$ $y={-0, 5x-3, 5}/{-2}$ $⇔$ $y=0, 25x+1, 75$ Donc $d_1$ admet pour équation réduite: $y=0, 25x+1, 75$. 3. La droite $d_2$ passant par A et de pente $-2$ admet une équation du type: $y=-2x+b$ Or $d_2$ passe par $A(1;2)$. Donc: $2=-2×1+b$. Donc: $4=b$. Donc $d_2$ admet pour équation réduite: $y=-2x+4$. 4. Exercices corrigés maths seconde équations de droites d’une hypersurface cubique. $d_2$ admet pour équation réduite: $y=-2x+4$.