nhanlikesub.click

Controle Dérivée 1Ère Section Jugement

Fri, 05 Jul 2024 08:09:23 +0000

Fonctions (Généralités, compositions) Second degré Polynômes et fractions rationnelles Nombres complexes Produit scalaire Fonctions (Dérivées) Sujets

Controle Dérivée 1Ère Série

L'école anglaise... Barrow avant Newton Les méthodes analytiques de Descartes et de Fermat ont beaucoup de succès en angleterre et sont donc reprises par John Wallis (1616-1707) et James Gregory (1638-1675). Devoir sur les dérivées Première Maths Spécialité - Le blog Parti'Prof. Ceci pousse le mathématicien Issac Barrow (1630-1677), le prédécesseur d'Isaac Newton (1643-1727) à la chaire de mathématique de l'université de Cambridge à développer une méthode des tangentes par le calcul, très proche de celle actuellement utilisée. Il expose cette méthode dans ses cours. Newton et Leibniz Puis le mathématicien anglais Newton (1643-1727) et allemand Leibniz (1646-1716), indépendamment l'un de l'autre, inventent des procédés algorithmiques ce qui tend à faire de l'analyse dite infinitésimale, une branche autonome des mathématiques. Newton publie en 1736 sa méthode la plus célèbre, la méthode des fluxionse et des suites infinies. Vers plus de rigueur C'est cependant Blaise Pascal qui, dans la première moitié du 17e siècle, a le premier mené des études sur la notion de tangente à une courbe - lui-même les appelait « touchantes ».

Controle Dérivée 1Ere S Maths

Le marquis de l'Hospital contribuera à diffuser le calcul différentiel de Leibniz à la fin du 17e siècle grâce à son livre sur l'analyse des infiniment petits. Wallis, mathématicien anglais (surtout connu pour la suite d'intégrales qui porte son nom) contribua également à l'essor de l'analyse différentielle. Les notations et vocabulaire C'est à Joseph-Louyis Lagrange (1736-1813) que l'on doit la notation \(\displaystyle f'(x)\), aujourd'hui usuelle, pour désigner le nombre dérivé de \(\displaystyle f\) en \(\displaystyle x\). C'est aussi à lui qu'on doit le nom de « dérivée » pour désigner ce concept mathématique. C'est au XVIIIe siècle que Jean le Rond d'Alembert (1717-1783) introduit la définition plus rigoureuse du nombre dérivé en tant que limite du taux d'accroissement - sous une forme semblable à celle qui est utilisée et enseignée de nos jours. Fonctions dérivées en 1ère S - Cours, exercices et vidéos maths. Cependant, à l'époque de d'Alembert, c'est la notion de limite qui pose problème: \(\displaystyle \mathbb {R} \)n'est pas encore construit formellement.

Controle Dérivée 1Ère Séance Du 17

I. Nombre dérivé f f est une fonction définie sur un intervalle I I. 1. Définitions On fixe un nombre a a dans l'intervalle I I. Le réel T f ( a) = f ( a + h) − f ( a) h, avec k ∈ R + T_f(a)=\frac{f(a+h)-f(a)}{h}, \textrm{ avec} k\in\mathbb R^+ s'appelle le taux d'accroissement de f f en a a. Définition: f f est dite dérivable en a a si lim ⁡ h → 0 f ( a + h) − f ( a) h existe. \lim_{h\rightarrow 0}\frac{f(a+h)-f(a)}{h}\textrm{ existe. } On note f ′ ( a) = lim ⁡ h → 0 f ( a + h) − f ( a) h f'(a)=\lim_{h\rightarrow 0}\frac{f(a+h)-f(a)}{h} f ′ ( a) f'(a) s'appelle le nombre dérivé de f f en a a. Exemple: La fonction carrée est-elle dérivable en 3 3. Controle dérivée 1ere s and p. On pose g ( x) = x 2 g(x)=x^2 On calcule: g ( 3 + h) = ( 3 + h) 2 = 9 + 2 × 3 × h + h 2 = 9 + 6 h + h 2 g(3+h)=(3+h)^2=9+2\times 3\times h+h^2=9+6h+h^2 et g ( 3) = 3 2 = 9 g(3)=3^2=9 Calculons le taux d'accroissement de g g en a a. T g ( 3) = g ( 3 + h) − g ( 3) h = 9 + 6 h + h 2 − 9 h = 6 h + h 2 h = h ( 6 + h) h = 6 + h T_g(3)=\frac{g(3+h)-g(3)}{h}=\frac{9+6h+h^2-9}{h}=\frac{6h+h^2}{h}=\frac{h(6+h)}{h}=6+h et lim ⁡ h → 0 T g ( 3) = 6 \lim_{h\rightarrow 0}T_g(3)=6 La fonction carrée est dérivable en 3 3 et g ′ ( 3) = 6 g'(3)=6.

Controle Dérivée 1Ere S And P

1 KB Contrôle 6-2-2015 - produit scalaire (1) - trigonométrie 1ère S Contrôle 6-2-2015 version 1-1-202 56. 2 KB Contrôle 13-2-2015 - produit scalaire (1) et (2) - statistiques - suites arithmétiques et géométriques (1) - rotations 1ère S Contrôle 13-2-2015 version 25-2-2 132. 3 KB Contrôle 6-3-2015 1ère S Contrôle 6-3-2015 version 4-7-202 811. 0 KB Test 10-3-2015 produit scalaire (1) et (2) 1ère S Test non noté 10-3-2015 version 7 43. 4 KB Test 11-3-2015 43. 7 KB Contrôle 13-3-2015 - produit scalaire (3): utilisation des propriétés - schéma de Bernoulli (2) entraînement indispensable sur le produit scalaire: contrôle 20-3-2012 ex. Controle dérivée 1ere s maths. II 1ère S Contrôle 13-3-2015 version 16-3-2 236. 3 KB Test 16-3-2015 produit scalaire (3) 68. 5 KB Contrôle 18-3-2015 - produit scalaire (3): ensembles de points - généralités sur les suites 1ère S Contrôle 18-3-2015 version 28-4-2 378. 2 KB Test 23-3-2015 Reprise du corrigé du contrôle du 18-3-2015 Construction en marches d'escaliers détaillée 1ère S Test 23-3-2015 version 28-4-2016.

Détails Mis à jour: 26 novembre 2017 Affichages: 125289 Dérivation, nombre dérivé et tangentes Le chapitre traite des thèmes suivants: dérivation, nombre dérivé et tangentes Un peu d'histoire... de la notion de dérivée Naissance du concept Le célèbre mathématicien grec Archimède de Syracuse (-287; -212) le premier semble s'intéresser à la notion de tangente. Controle dérivée 1ère série. Il énonce des propriétés concernant notamment les tangentes à la spirale qui porte son nom. Des siècles plus tard, le mathématicien italien Torricelli (1608-1646) et le français Roberval (1602-1675) prolongent la méthode d'Archimède et apportent les premières pierres à un édifice majeur des mathématiques, le calcul infinitésimal. La tangente comme position limite Le mathématicien Pierre de Fermat (vers 1610-1665), surnommé "prince des amateurs", décrit la tangente comme position limite d'une sécante à une courbe. C'est la définition qu'on utilise aujourd'hui comme sur l'animation ci-dessus. René Descartes, souvent très dur envers Fermat, critiquera le manque de rigueur de ce dernier ce qui pousse "l'amateur" à clarifier et à étendre sa méthode.

3/ Donner le nombre de solutions de l'équation f(x) = m suivant les valeurs de m. Partie B 4/ C admet-elle des tangentes parallèles à la droite d'équation y = -7x. Si oui donner les abscisses des points où ces/cette tangente(s) existe(nt). 5/ C admet-elle des tangentes parallèles à la droite d'équation y = 20 + 3x. Si oui donner les abscisses des points où ces/cette tangente(s) existe(nt). Partie C 6/ Soit la fonction g définie sur par g(x) = 3x 3 – x² + 4x – 2 et la fonction f de la partie A, définie sur par f(x) = 3x 3 – 6x² + 3x + 4. Mathématiques : Contrôles première ES. On note C f la courbe représentative de f et C g la courbe représentative de g. À l'aide de la calculatrice, conjecturer la position relative de C f et C g. 7/ Démontrer cette conjecture par le calcul. Exercice 2 (sans calculatrice – 10 points) Soit la fonction h définie par \(h(x) = {x – 2 \over \sqrt{x}}\). On note C sa courbe représentative dans un repère orthonormé. 1/ Donner l'ensemble de définition de h. 2/ Résoudre h(x) = 0. 3/ Montrer que la dérivée de h est \(h'(x) = {x + 2 \over 2x\sqrt{x}}\).