nhanlikesub.click

Arithmétique Dans Z 1 Bac S Blog

Mon, 08 Jul 2024 17:33:39 +0000

1ère bac SM: l'arithmétique dans Z ( Exercice 2) - YouTube

Arithmétique Dans Z 1 Bac S Blog

Par conséquent, d'après la division euclidienne, le reste r la division euclidienne de \(4^{n}\) par 7 est: r=1 si n≡0 [3]. r=4 si n≡1 [3]. r=2 si n≡2 [3]. 3) a) 851=7×121+4 et \(0≤4<7\). Le reste de la division euclidienne de 851 par 7 est donc 4. b) Soit n un entier naturel. \(A=851^{3n}+851^{2n}+851^{n}≡4^{3 n}+4^{2n}+4^{n} [7] \). \(A≡1+4^{2 n}+4^{n} [7] \). D'après les questions précédentes: *si n=0, alors A≡1+1+1| [7]≡3 [7]. *si n=1, alors A≡1+4²+4| [7]≡1+2+4 [7] ≡0 [7]. *si n=2, alors A≡1+2²+2 [7]≡7 [7] ≡0 [7]. Arithmétique dans Z - Cours sur Arithmétique - 2 Bac SM - 1 Bac SM - [Partie 1] - YouTube. Or, 0 et 3 sont des entiers naturels de l'intervalle [0;7[. Par conséquent, le reste dans la division euclidienne de A par 7 est 0 où 3: 0 si (n≡0 [3] où n≡2 [3]) 3 si n≡0 [3]. 4) On considère le nombre B s'écrivant en base 4: B=\(\overline{2103211}^{4}\) Alors \(B=1+4+2×4^{2}+3×4^{3}+4^{5}+2×4^{6}\) B=1+4×k avec K=\((1+2×4+3×4^{2}+4^{4}+2×4^{5})\)∈Z B≡1 [7] De plus 0≤1<4. Donc le reste dans la division euclidienne de B par 4 est 1. * Exercice 15 * \((x_{0}; y_{0})\)=(1;1) est une solution particulière de (E) \((x; y)\) solution de (E)⇔3 x-2y=1 ⇔\(3x-2y=3 x_{0}-2 y_{0}\)⇔\(3(x-x_{0})=2(y-y_{0})\) ⇔ 3(x-1)=2(y-1)(x) ① ⇒ \(\left\{\begin{array}{l}3 \mid 2(y-1) \\ 3 ∧ 2=1\end{array}\right.

Arithmétique Dans Z 1 Bac Smart

Bon Chance à Tous Le Monde Toutes vos remarques, vos commentaires, vos critiques, et même vos encouragements, seront accueillis avec plaisir. S'IL VOUS PLAIT LAISSE UN COMMENTAIRE

Arithmétique Dans Z 1 Bac Smile

Modifié le 17/07/2018 | Publié le 11/02/2008 L'Arithmétique est une notion à connaître en mathématiques pour réussir au Bac. Vous n'êtes pas sûr d'avoir tout compris? Faites le point grâce à notre fiche de révision consultable et téléchargeable gratuitement. Pré-requis: Ensemble de nombres Plan du cours 1. Divisibilité dans Z 2. Congruence 3. Plus grand commun diviseur Dans tout ce qui suit, on se place dans l'ensemble des entiers relatifs Z. A. Diviseur Soient a et b deux entiers relatifs. Arithmétique - Méthodes et exercices. On dit que a divise b, ou que a est un diviseur de b, s'il existe un entier relatif k tel que b=k×a. On dit que b est un multiple de a, s'il existe un entier relatif k tel que b=k×a. On note a | b. Ex: 3 est un diviseur de 18. 18 est un multiple de 3. 5 est un diviseur de -25. -25 est un multiple de 5. Propriétés: Soient a, b et c trois entiers relatifs. Si a divise b alors a divise kb pour tout k∈"Z". Si a divise b et b divise c, alors a divise c. Si a divise b et a divise c, alors a divise kb+k'c pour tout k∈"Z" et tout k'∈"Z".

Division euclidienne Soient $a$ et $b$ deux entiers relatifs. On dit que $a$ divise $b$, ou que a est un diviseur de $b$ s'il existe $k\in\mathbb Z$ tel que $b=ka$. On dit encore que $b$ est un multiple de $a$. Théorème (division euclidienne): Soient $(a, b)\in\mathbb Z^2$ avec $b\neq 0$. Il existe un unique couple $(q, r)\in\mathbb Z^2$ tels que $$\left\{ \begin{array}{l} a=bq+r\\ 0\leq r< |b|. \end{array} \right. 1ère bac SM : l’arithmétique dans Z ( Exercice 2 ) - YouTube. $$ $q$ s'appelle le quotient et $r$ s'appelle le reste. pgcd, ppcm Si $a$ et $b$ sont deux entiers relatifs dont l'un au moins est non-nul, alors le pgcd de $a$ et $b$, noté $a\wedge b$, est le plus grand diviseur commun de $a$ et $b$. Cette définition se généralise à plus de deux entiers, en supposant toujours qu'au moins un est non-nul. Si $a=b=0$, on pose $a\wedge b=0$. On a $(d|a\textrm{ et}d|b)\iff d|a\wedge b$. Si $a, b, k\in (\mathbb Z\backslash\{0\})^3$, alors $(ka)\wedge (kb)=|k|(a\wedge b)$. Algorithme d'Euclide: Si $r$ est le reste dans la division euclidienne de $a$ par $b$, alors on a $$a\wedge b=b\wedge r. $$ On en déduit l'algorithme suivant pour calculer le pgcd pour $a\geq b\geq 0$.