nhanlikesub.click

Exercice Suite De Fibonacci Avec Solution | Exercice Lycée, Collège Et Primaire

Wed, 03 Jul 2024 03:10:10 +0000
Enoncé: La suite de Fibonnacci est la solution au problème suivant: supposons qu'un couple (un mâle, une femelle) de lapins immatures soit mis dans un champ, que la maturité sexuelle du lapin soit atteinte après un mois qui est aussi la durée de gestation, que chaque portée comporte toujours un mâle et une femelle et que les lapins ne meurent pas. Combien y aura-t-il de lapins dans le champ après un an? Écrivez un programme qui affiche les premiers termes de la suite de Fibonacci. Cette suite qu'on notera F peut se calculer ainsi: F(0) = 1, F(1) = 1, F(i) = 1 et F(i-1) + F ( i – 2). Essayez les deux possiblités: avec et sans récursivité. Quelle version est la plus rapide? Vérifiez que le quotient de 2 nombres consécutifs de la suite de Fibonacci converge vers le nombre d'or (1+? 5)/2, qui vaut environ 1.
  1. Suite de fibonacci et nombre d or exercice corriger

Suite De Fibonacci Et Nombre D Or Exercice Corriger

C'est là que j'ai une idée: pourquoi ne pas considérer une combinaison linéaire de ces deux suites? Allez! Je me lance! Je pose pour tout entier naturel n:$$u_n=\alpha q_1^n + \beta q_2^n. $$Il est assez facile de constater que:$$\begin{align}u_{n+2}-u_{n+1}-u_n & = \alpha q_1^n(q_1^2-q_1-1) + \beta q_2^n(q_2^2-q_2-1)\\& = 0\end{align}$$car \( q_1^2-q_1-1 = 0\) et \( q_2^2-q_2-1 = 0\). Ainsi, la suite de Fibonacci fait partie des suites \((u_n)\). Il ne reste plus qu'à trouver les valeurs de \(\alpha\) et \(\beta\). Pour cela, on va considérer que:$$\begin{cases}F_0 = \alpha + \beta & = 1\\F_1=\alpha q_1 + \beta q_2 & = 1\end{cases}$$On arrive alors à:$$\alpha=\frac{5-\sqrt5}{10}\text{ et}\beta=\frac{5+\sqrt5}{10}. $$Ainsi, la suite de Fibonacci peut s'exprimer de la manière suivante:$$F_n=\left( \frac{5-\sqrt5}{10} \right)\left( \frac{1-\sqrt5}{2} \right)^n + \left( \frac{5+\sqrt5}{10} \right)\left( \frac{1+\sqrt5}{2} \right)^n. $$ Le nombre \(\displaystyle\frac{1+\sqrt5}{2}\) qui apparaît dans la formule est appelé le nombre d'or; on le note souvent \(\varphi\) ou \(\phi\) ("phi").

Ce qu'il y a d'intéressant, c'est que si on calcule les quotients successifs \(\displaystyle\frac{F_{n+1}}{F_n}\), on s'aperçoit qu'ils se rapprochent de plus en plus du nombre d'or (voir cet article). Read more articles